
An analysis of in-country article references and

predictive modeling of local ratios based on country

neighbors

Victoria Dollar, Ben Galin, Tyler Karhoff, and Gregory Smith

Emporia State University

January 13, 2023

Introduction and Background

Citations are an important tool for recording the use of public research. They allow recog-

nition to authors for their methodology and contribution to their field. Citation formatting

grants scholars the means to trace sources shared throughout the literature in a more man-

ageable way. With the invention of the world wide web, published articles have become more

accessible at greater distances. As a result, global inquiries examine the geolocation of the

author in reference to subject matter, country of origin, number of citations used, the number

of times the article was cited, etc.

An egocentric network centralizes the relationship between an entity of interest and its

subnetwork. [9] For a particular publication, a local ratio can be constructed comparing the

countries of the author to the countries of the citations’ authors used in that article. A higher

ratio would implicate that more citations utilized, originated from its own country whereas

a lower ratio would reflect the usage of articles stemming from other countries. This paper

will focus on comparing the ratios of various countries of statistics journals and estimating a

country’s ratio based upon the ratios of its neighbors. In the end, the hope is to gain insight

on the relationship of networks between countries in the world of academia.

One factor that limits the use of a journal in research is accessibility. Since the birth of

the internet, the number of journal publications have increased. Brazil (18.6%), the United

Kingdom (10.7%), and the United States (6.4%) were reported to have the highest input in

1

2

open-access citations. [3] Open-access journals have contributed to this increase by allowing

three-times more articles to be published, [5] and as a result, studies have been done to

determine their impact. Antelman has reported that these journals have a much greater, yet

complex impact on research. [2] It was found that the number of citations did not increase,

but open-access articles were more favored. Similarly, Davis et al. notes that open-access

allows for an increase in the number of readers but not necessarily the number of citations.

[5] Although data will not be available to determine if open-access articles affect the local

ratio, these articles could influence our results.

To date, no study has been published to determine the correlation between a country and

its neighbors, in terms of academic references. However, one study was found that is similar

to the study we performed. Gouel et al. examined the prevalence ratio, comparing the IP

geolocations of readers to the IP geolocation of the author of online published articles. [6]

The results showed that 98% of the webpage views derived from the country of origin. The

mean prevalence ratio was 0.9 meaning that most of the articles did not network outside of

their country. The minimum ratio was from Kossovo (0.18), and an unexpectedly low ratio of

0.6 was recorded for the United Kingdom. There were four additional studies that provided

some insight into the number of citations used in articles in ocean acidification and fuzzy

research studies by country.

Sahoo and Pandley tracked and mapped 100 published articles on ocean acidification. [7]

The United States (57 citations), Germany (26 citations), and Australia (24 citations) were the

top three countries that had their articles cited the most often. Alfaro-Garcia et al. published

a study determining the total citation counts in fuzzy research articles for countries around

the world, and the top three countries were China and Taiwan (141,298 citations), the United

States (37,601 citations), and Iran (25,291 citations). [1]

Based upon this research, we can observe that these top countries are not located near one

another. In effect, we can hypothesize that there will be no spatial correlation between a coun-

try’s local ratio and the estimations produced from neighboring countries. Reasoning that

the size, GDP, and commitment to education advancement will make a much larger impact

with the number of publications and contribution to research over a country’s geolocation.

3

Methods

Data collection

We started with an initial seed of the 100 most recent articles as of November 19, 2022, match-

ing the query term statistics in Crossref, a DOI registration agency website. Identifying

each article by its DOI, we then used Crossref’s public API to retrieve metadata about the

article. Specifically, we retrieved metadata about the authors and their affiliations, and about

the reference DOIs used by each article. We then repeated the process for each discovered

reference DOI, running enough iterations until more than 500,000 articles were fetched.

For about 70% of articles, at least one of the authors included an affiliation name, often

the name and address of a university. We attempted to find the country associated with each

affiliation by parsing this value and matching it against a list of country names. We were able

to associate about 8% of articles with a country in such a manner.

Detailed documentation for this data collection process is located in the Appendix under

Listing 2.

Local ratio computation

For each article associated with a country, we looked at its references and their associated

countries. We then computed the article local ratio as the number of references from the

same country divided by the total number of references. We disregarded references that we

were unable to associate with a country.

As a concrete example, consider this very article. Of the references listed below, seven

have DOIs. Of these seven, only two — [7] and [4] — have affiliation metadata listed in the

Crossref database, which we can parse and find to be India and Norway, respectively. Thus,

this article’s local ratio is 0/2.

We then computed the country local ratio by taking the average of the article local ratios

from this country. We are able to see these results in Figure 6 which was created using the R

library tmap. [8]

Selecting neighbors

When selecting what constitutes a ‘neighbor’ for specific sovereign countries, we looked

at three distinct methods. These methods were able to be performed using the R library

spdep.[4] The first and perhaps most intuitive method is to say that neighbors are contiguous,

or connected by a border. Doing so yields the result found in Figure 1.

4

Figure 1: Boarder Neighbors (Red Line connects all Neighbors that Share a Border)

Notice that this is fairly accurate; however, it does have some drawbacks when it comes

to analysis. For instance, countries with multiple sections cannot be well-matched. Notice

that France is connected to Brazil and Suriname due to French Guiana being a part of France.

This method’s second problem is that island nations are all neighbor-less, making analysis

with these countries impossible with this method. Thus, we will not be using this method for

analysis, as it is too restrictive.

The second method we considered is using the centroids of all nations and a threshold

maximal distance between them. There are many possible choices for a threshold. Two of

them are shown in Figures 2 and 3.

5

Figure 2: Centroid Neighbors (Brown Line connects all Neighbors that have close geographical
centroids)

Figure 3: Centroid Neighbors (Brown Line connects all Neighbors that have further geographical
centroids)

Both of these choices can cause problems with our data set. The first choice doesn’t allow

for much distance between neighbors and picks what countries are neighbors conservatively,

while the second is much more liberal. We believe that the distinction in selecting neighbors

with this method is also difficult to test properly, so we also have chosen not to use it. However,

for a secondary study, it would be interesting to compare the results from this method and

our last and chosen method.

6

The third method we considered is to use centroids as before, but instead of picking

a maximal distance, we looked at a predefined number of nearest neighbors. As with the

distance threshold approach, we experimented with different values for the number of nearest

neighbors. Figures 4 and 5 show the results with three and five nearest neighbors.

Figure 4: Centroid Neighbors (Orange Line connects three closest Neighbors)

Figure 5: Centroid Neighbors (Orange Line connects five closest Neighbors)

The final method provides a pleasant result. We chose this method for our study for

several reasons. First, unlike the first method, island nations can have neighbors for analysis.

Second, varying the specific number of neighbors allows us to easily conduct several analyses:

using a conservative choice for the number of neighbors and a more liberal choice for the

7

number of neighbors when trying to create our predictive model. Our hope was to see which

neighbor count provided the best prediction for local ratios. If a neighboring country was

missing its local ratio, then we selected the next neighbor. We found this to be the best way to

pass over unknown countries without them vastly altering our results.

Spatial autocorrelation

Once we had a method of selecting neighbors, our goal was to see if there is spatial autocor-

relation present in the country’s local ratios. We computed the Moran I statistics [4] with

three, five, and ten neighbors. We then adjusted the weighting function of the neighbors to

an Inverse Distance Weight (IDW) and repeated the test.

Further, we tried to predict countries’ local ratios by examining the local ratios of the

countries nearest to them. Again, we used both a simple moving average and an IDW-

based moving average for every sampled country. For example, the United States’ closest

three neighbors with data points are Canada, Mexico, and Cuba. Thus, when calculating

the estimated ratio for the United States, we took the mean and the weighted averages of

these three results. We then computed the Pearson correlation coefficient, between our

sample local ratios and the estimated ratios. We did this for several neighbor counts to

see if any provided a correlation. The details are in our results and analysis, and the code

implementation is documented in Listing 1.

Listing 1: R Implementation of IDW

1 library(sf)
2 library(magrittr)
3

4

5 idw = function(Countries_df) {
6 World_centroids <- suppressWarnings(
7 st_centroid(Countries_df) %>%st_coordinates ()
8)
9

10 corr_list <- list()
11 for (m in 1 : 20) {
12 # Find the m nearest neighbors based on the centroids of each

country.
13 World.knb <- knn2nb(knearneigh(World_centroids , k = m))
14

15 # ‘country_sma ‘ will hold the estimated local ratios , based on
neighbors.

8

16 country_sma <- list()
17

18 # Iterate over countries.
19 for (i in 1 : nrow(Countries_df)) {
20 neighbor_list <- World.knb[[i]]
21

22 # Compute the first -power IDW of the current country.
23 # The formula is (\sum_j r_j/d_j)/(\sum_j 1/d_j), where
24 # r_j is the local ratio of neighbor j; and
25 # d_j is the centroid distance between neighbor j and our

country i.
26 numerator = 0
27 denominator = 0
28 for (j in 1 : m) {
29 distance <- as.numeric(st_distance(
30 suppressWarnings(st_centroid(Countries_df[i,])),
31 suppressWarnings(st_centroid(Countries_df[neighbor_list[[j

]],]))))
32 local_ratio <- Countries_df[neighbor_list[[j]],]$local_ratio
33 numerator <- numerator + local_ratio/distance
34 denominator <- denominator + 1/distance
35 }
36 country_sma <- append(country_sma , numerator/denominator)
37 }
38

39 # Compute the Pearson correlation between the actual local_ratios
and the

40 # estimated ones.
41 country_sma <- as.numeric(country_sma)
42 knb_final_df <- data_frame(Countries_df$sovereignt , Countries_df$

local_ratio , country_sma)
43 colnames(knb_final_df) <- c(’sovereignt ’,’local_ratio’, ’country_

sma’)
44 corr_list <- append(corr_list , cor(knb_final_df$local_ratio , knb_

final_df$country_sma))
45 }
46

47 return(corr_list)
48 }

9

Results & Analysis

The results located in Table 1 compare the sample local ratios with their estimations based on

a simple moving average of the neighbors’ local ratios. We are showing the results for three-,

five-, and ten-closest neighbors, along with visualizations for each in figures 7, 8, and 9.

Country Sample Local Rat. 3 Neigh Est. 5 Neigh Est. 10 Neigh Est.Column1 Country Sample Local Rat. 2 3 Neigh Est. 2 5 Neigh Est. 2 10 Neigh Est. 2
Algeria 0.0000 0.1791 0.1688 0.1036 Luxembourg 0.0000 0.1502 0.1588 0.1735
Argentina 0.1855 0.0738 0.0443 0.0681 Malaysia 0.0286 0.0787 0.0472 0.1066
Australia 0.1893 0.0095 0.0331 0.0991 Luxembourg 0.0000 0.1502 0.1588 0.1735
Austria 0.1084 0.1396 0.1518 0.1140 Malaysia 0.0286 0.0787 0.0472 0.1066
Bangladesh 0.3333 0.1217 0.1031 0.1017 Mexico 0.0189 0.3710 0.2393 0.1769
Belgium 0.1288 0.1073 0.1330 0.1606 Morocco 0.3667 0.0569 0.0654 0.0805
Brazil 0.1007 0.0000 0.0612 0.0747 Mozambique 0.0000 0.1596 0.1237 0.1114
Canada 0.1658 0.3773 0.2430 0.1531 Myanmar 0.0000 0.1898 0.1698 0.1350
Chile 0.1206 0.0954 0.0572 0.0746 Netherlands 0.1715 0.1062 0.1245 0.1564
China 0.1505 0.1111 0.1412 0.1088 Nigeria 0.0000 0.0000 0.0854 0.1318
Colombia 0.0000 0.0278 0.1082 0.1622 Norway 0.1859 0.1684 0.1042 0.1516
Costa Rica 0.0000 0.1468 0.0919 0.1622 Pakistan 0.3356 0.0934 0.1561 0.1089
Croatia 0.0000 0.0842 0.0806 0.1219 Panama 0.0833 0.1190 0.0752 0.1539
Cuba 0.3571 0.0278 0.0205 0.1310 Philippines 0.0000 0.0551 0.0803 0.1141
Cyprus 0.0000 0.1094 0.0870 0.0885 Poland 0.1282 0.1599 0.1176 0.0835
Czech Republic 0.3772 0.0500 0.0762 0.1025 Portugal 0.0677 0.2087 0.1876 0.1389
Denmark 0.1535 0.1204 0.1735 0.1590 Qatar 0.1667 0.0770 0.0462 0.1124
Egypt 0.0601 0.1094 0.0657 0.0675 Romania 0.0000 0.0878 0.0783 0.0919
Estonia 0.0156 0.1101 0.0960 0.1146 Russia 0.1436 0.1880 0.1799 0.1577
Finland 0.2020 0.0551 0.0959 0.1113 Saudi Arabia 0.0798 0.0556 0.0662 0.0706
France 0.1563 0.0730 0.1699 0.1300 Senegal 0.0000 0.1222 0.0869 0.1043
Georgia 0.2288 0.0356 0.0213 0.0666 Slovakia 0.0000 0.2027 0.1299 0.1098
Germany 0.1898 0.1073 0.1167 0.1282 Slovenia 0.0417 0.1619 0.1477 0.1207
Greece 0.1607 0.0342 0.0288 0.0887 South Africa 0.0690 0.1366 0.0940 0.0880
Guinea 0.0000 0.1222 0.0869 0.1043 South Korea 0.0801 0.1544 0.0926 0.1061
Hungary 0.1026 0.0139 0.1094 0.1156 Spain 0.1030 0.1969 0.1740 0.1353
Iceland 0.1667 0.1561 0.1537 0.1279 Sweden 0.1498 0.1805 0.1114 0.1424
India 0.1291 0.2230 0.1810 0.1453 Switzerland 0.1504 0.1062 0.1154 0.1321
Indonesia 0.0000 0.0095 0.0803 0.1155 Taiwan 0.1367 0.0267 0.0813 0.1005
Iran 0.1511 0.0556 0.0950 0.1139 Thailand 0.2361 0.1111 0.0997 0.0858
Iraq 0.0000 0.0547 0.0816 0.1061 Turkey 0.1067 0.0547 0.0657 0.0718
Ireland 0.0484 0.1830 0.1576 0.1362 Ukraine 0.0000 0.0356 0.0245 0.0743
Israel 0.1642 0.0547 0.0449 0.0800 United Kingdom 0.2637 0.1162 0.1010 0.1290
Italy 0.1503 0.0500 0.1355 0.1131 United Arab Emirates 0.0000 0.1325 0.1466 0.1290
Japan 0.1759 0.0723 0.0735 0.0965 United States 0.7558 0.1806 0.1250 0.1013
Jordan 0.0000 0.1094 0.0657 0.0970 Uruguay 0.0000 0.1356 0.0814 0.0847
Kenya 0.4097 0.0466 0.0613 0.0704 Venezuela 0.0000 0.0278 0.1082 0.0866
Latvia 0.0000 0.1153 0.0692 0.1084 Vietnam 0.0000 0.0883 0.0803 0.1095
Lebanon 0.0000 0.1094 0.0870 0.0964

Table 1: Sample Ratios and Estimated Local Ratios for 3, 5, and 10 Neighbors

11

The estimates tend to be more accurate when the local ratio is around 0.10-0.20. Excep-

tionally high or exceptionally low local ratios are estimated poorly by their neighbors. This is

an example of a “regression to the mean”, as the neighbors’ local ratios are less extreme.

Looking at the top ten countries based on local ratios, we didn’t notice any obvious

trends. These countries — United States, Kenya, Czech Republic, Morocco, Cuba, Pakistan,

Bangladesh, United Kingdom, Thailand, and Georgia — include both large and small coun-

tries, countries from different continents, high GDP and low GDP countries, etc.

Using the Moran I test, we found no autocorrelation in the local ratios, irrespective of the

number of neighbors and the average weighting function used. See Table 2.

Neighbors Weight p-value Moran I statistic

3 simple average 0.673 −0.047723953

3 IDW 0.7221 −0.08322051

5 simple average 0.5844 −0.02575441

5 IDW 0.6503 −0.05582828

10 simple average 0.6703 −0.030992166

10 IDW 0.5325 −0.02120910

Table 2: Moran I test results

Figure 6: Local Ratio by Country (Breaks are not perfectly divided. This is present in all future maps)

12

Figure 7: Estimating Local Ratio Based on 3 Closest Neighbors

Figure 8: Estimating Local Ratio Based on 5 Closest Neighbors

13

Figure 9: Estimating Local Ratio Based on 10 Closest Neighbors

The thematic maps [8] in Figures 7, 8, and 9 visualize the estimated local ratios for three-,

five-, and ten-neighbors, respectively. The Pearson correlation coefficients are −0.08678

for three-, −0.07008 for five-, and −0.14110 for ten neighbors. When peering into more

neighbors the Pearson coefficient stays negative with little correlation. Similarly, the Moran I

test confirms no autocorrelation is present. This shows that the sample local ratio cannot be

reliably estimated from the local ratios of neighboring countries.

Discussion & Conclusion

As we hypothesized, there is no correlation between a country’s local ratio and the estimation

of the neighboring countries. We can conclude that using k-neighbors, is not the best method

of estimation per the results of the Moran I test. In respect to this, there are many contributing

factors that could influence the lack of correlation, such as, the number of universities

and other research facilities located in a country, the country’s GDP and population, and

geolocation in reference to other research-focused groups.

In addition, the process of matching an article to a country is imprecise. The affiliation

data stored with each article is open-form, and authors often enter non-standard address

information or location. Since we processed a large number of records, we had to automate

this parsing and matching logic. In the case of United States-based articles, we were aided by

our knowledge of common forms of address writing (for example, addresses ending with a

state two-letter abbreviation and a 5- or 9-digit zip code). Presumably, we were thus able to

14

detect a larger proportion of United States articles. This, in effect, contributed to a higher

computed local ratio in the United States as compared to the true local ratio. Conversely, for

countries with a large fraction of United States citations, we computed a lower local ratio

than we would have had, had we not been able to parse United States addresses. A more

sophisticated language parsing scheme, such as from natural language processing, would

undoubtedly improve this result, which is an avenue of potential future study.

Another main contributor to the data quality is the sparse nature in which reference DOIs

are present for an article given the different citation forms (APA, MLA, Chicago, AMS, etc.).

Consequently, many articles do not have any importance in regard to analysis besides being

a reference to source article. Ultimately, both of the above factors require retrieval of mass

articles to gather a sufficient sample of articles that can be assigned to source countries.

For a more representative sample, magnitudes greater than half a million articles should be

amassed for ratio analysis.

References

[1] ALFARO-GARCIA, V., AND MERIGO, J. A citation analysis of fuzzy research by universities

and countries. Journal of Intelligent & Fuzzy Systems 38 (2020).

[2] ANTELMAN, K. Do open-access articles have a greater research impact? College & Research

Libraries 65, 5 (2004).

[3] BHARDWAJ, R. India’s contribution to open access movement. Journal of Knowledge &

Communication Management 5, 2 (2015), 107–126.

[4] BIVAND, R. R packages for analyzing spatial data: A comparative case study with areal

data. Geographical Analysis 54, 3 (2022), 488–518.

[5] DAVIS, P., LEWENSTEIN, B., AND ET AL. Open access publishing, article downloads, and

citations: Randomised controlled trial. BMJ (2008).

[6] GOUEL, M., VERMEULEN, K., AND ET AL. Longitudinal study of an ip geolocation database.

arXiv (2021).

[7] SAHOO, S., AND PANDEY, S. Characteristics and inter-citation network of 100 most

influential studies on ocean acidification: A bibliometric analysis. Science & Technology

Libraries 41, 1 (2022), 56–72.

15

[8] TENNEKES, M. tmap: Thematic maps in R. Journal of Statistical Software 84, 6 (2018),

1–39.

[9] WENG, T., LI, Z., AND ZHANG, J. Egocentric visual analysis of dynamic citation network.

Journal of Visualization 25 (2022), 1343–1360.

16

Appendices

17

Python Code

1 import re
2 import os
3 import pandas as pd
4 import numpy as np
5 import time
6 from concurrent.futures import ThreadPoolExecutor , as_completed
7 from habanero import Crossref
8 import urllib.parse
9 import math

10 from typing import Set , Dict , List , Tuple
11

12

13 # ARTICLE RETRIEVAL #
14

15 def parse_dois(article: dict) -> Set[str]:
16 return set([urllib.parse.unquote(ref.get(’DOI’).strip ()) for ref in

article.get(’reference ’, []) if ref.get(’DOI’)])
17

18

19 def fetch_batch_to_df_threaded(dois: List[str], max_articles =100,
max_iteration =3,

20 runner_sleep =0.1, max_workers =20) -> pd.DataFrame:
21 articles_df = pd.DataFrame ()
22 start_time = time.time()
23 iteration = 0
24 while (articles_df.shape [0] < max_articles) and (len(dois) > 0):
25 iteration += 1
26 # boolean that determines if we get next ‘dois ‘
27 # on final iteration is ‘False ‘ so len(dois) == 0 and loop

breaks
28 get_next = iteration < max_iteration
29 dois , articles_df = fetch_threaded(dois , articles_df ,

start_time , get_next , runner_sleep , max_workers , max_articles)
30 print(’== end of iteration #%s (%d articles) (%d batches next

iteration) (%.2fs) ==’
31 % (iteration , articles_df.shape [0], math.ceil(len(dois)

/1000) , time.time() - start_time))
32 print(’Total articles:’,articles_df.shape [0])
33 print(’Final iteration:’, iteration)
34 print(’Final time: %.2fs’ % (time.time() - start_time))

18

35 print()
36 return articles_df
37

38

39 def fetch_threaded(dois: List[str], articles_df: pd.DataFrame ,
start_time: time.time , get_next: bool ,

40 runner_sleep: float , max_workers: int , max_articles: int) ->
Tuple[List[str], pd.DataFrame]:

41 next_dois = set()
42 batch = 0
43 while dois:
44 # we get some DOIs
45 dois_temp = dois [:1000]
46 # request data for each DOI
47 futures = runner(dois_temp , runner_sleep , max_workers)
48

49 # once we’re received all our DOI requests we can proceed
50 # we create the articles dictionary for these 1000 articles
51 # and add the corresponding reference DOIs to a list to be
52 # parced in next iteration of caller
53 articles = {}
54 articles_togo = max_articles - articles_df.shape [0] - len(dois)
55 queried_dois = set(articles_df.index).union(set(dois))
56 for future in as_completed(futures):
57 doi_temp , dict_temp = future.result ()
58 articles[doi_temp] = dict_temp
59 # if we’re not parsing the next ancestor level , let’s save

some time;
60 # also , once we have enough total articles , let’s not look

for more ancestors
61 if (get_next) and (len(next_dois) < articles_togo):
62 next_dois = next_dois.union(parse_dois(dict_temp).

difference(queried_dois))
63

64 batch += 1
65 # create corresponding DataFrame for articles and add to

ongoing DataFrame
66 articles_df_temp = articles_json_to_df(articles)
67 articles_df = articles_df.append(articles_df_temp)
68 print(’** Duplicates dropped: %d **’ % articles_df[articles_df.

index.duplicated ()].shape [0])
69 articles_df = articles_df [~ articles_df.index.duplicated(keep=’

19

first’)]
70 # articles_df.to_csv(’backup.csv ’, index=True)
71 print(’** end of batch #%d (%d articles) (%d batches next

iteration) (%.2fs) **’
72 % (batch , articles_df.shape[0], math.ceil(len(next_dois)

/1000) , time.time() - start_time))
73 # remove the DOIs we just queried
74 dois = dois [1000:]
75

76 return list(next_dois), articles_df
77

78

79 def runner(doi_list: List[str], runner_sleep: float , max_workers: int)
-> List:

80 futures = []
81 cr = Crossref(mailto = "your@email.ext")
82 with ThreadPoolExecutor(max_workers=max_workers) as executor:
83 for doi in doi_list:
84 futures.append(executor.submit(get_article_with_etiquette ,

doi , cr, runner_sleep))
85 time.sleep(runner_sleep)
86 return futures
87

88

89 def get_article_with_etiquette(doi: str , cr: Crossref , runner_sleep:
float) -> Tuple[str , Dict]:

90 count = 0
91 while count < 100:
92 try:
93 r = cr.works(ids = doi)
94 except Exception as e:
95 error_substring = str(e).split(’:’)[1]. strip() if len(str(e

).split(’:’)) > 1 else str(e)
96 if error_substring == ’Too Many Requests for url’:
97 extra_long = 300
98 print(’Sleeping for a while; %d seconds ’ % extra_long)
99 time.sleep(extra_long)

100 elif error_substring == ’Not Found for url’:
101 break
102 elif error_substring in [’Max retries exceeded with url’, ’

Gateway Time -out for url’]:
103 print(error_substring , doi)

20

104 else:
105 print(e)
106 time.sleep(runner_sleep)
107 count += 1
108 else:
109 # bundle the article data with corresponding DOI , since ‘

as_completed ‘
110 # iterates based upon completion and not list order
111 return doi , r.get(’message ’)
112 return doi , {}
113

114

115 # ARTICLE DATA TRANSFORMATION #
116

117 def get_key_keep_list () -> List:
118 return [’DOI’, ’author ’, ’reference ’]
119

120

121 def handle_prop_key(prop_key_str: str , prop_val):
122 if prop_key_str == ’author ’:
123 prop_list = list()
124 # create a list , consisting of all
125 # affiliations related to article
126 for author in prop_val:
127 affn_temp = author[’affiliation ’]
128 if len(affn_temp) > 0:
129 prop_list.extend ([x.get(’name’) for x in affn_temp if x

.get(’name’)])
130 if len(prop_list) > 0:
131 return prop_list
132 else:
133 return None
134

135 elif prop_key_str == ’reference ’:
136 prop_list = list()
137 # add all reference DOIs to a list
138 for reference in prop_val:
139 doi_temp = reference.get(’DOI’)
140 if doi_temp:
141 prop_list.append(doi_temp)
142 if len(prop_list) > 0:
143 return prop_list

21

144 else:
145 return None
146

147 elif prop_key_str == ’published ’:
148 date_list_nested = prop_val.get(’date -parts’)
149 # return date in YYYY -MM-DD string format
150 if date_list_nested:
151 prop_val = [’-’.join([str(y) for y in x]) for x in

date_list_nested]
152 else:
153 return date_list_listed
154

155 # ’DOI ’, ’subject ’, ’title ’, ’container -title ’, ’reference -count’
and non -null ’published ’ date

156 # fall through to here
157 if type(prop_val) == int:
158 return prop_val
159 elif len(prop_val) == 0:
160 return None
161 # if singleton list , just return the element
162 elif isinstance(prop_val , list) and len(prop_val) == 1:
163 return prop_val [0]
164 else:
165 return prop_val
166

167

168 def article_list_for_df(article_dict: Dict) -> List[dict]:
169 key_keep_list = get_key_keep_list ()
170 article_list = list()
171

172 # iterate through the articles
173 for doi , prop_keys in article_dict.items():
174 # iterate through the keys of the article
175 if prop_keys:
176 temp_dict = dict()
177 for prop_key in prop_keys:
178 if prop_key in key_keep_list:
179 temp_dict[prop_key] = handle_prop_key(prop_key ,

prop_keys[prop_key])
180 else:
181 temp_dict = {’DOI’: doi}
182 article_list.append(temp_dict)

22

183

184 return article_list
185

186

187 def articles_json_to_df(articles_json: json) -> pd.DataFrame:
188 # dataframe creation
189 articles_list = article_list_for_df(articles_json)
190 articles_df = pd.DataFrame(data = articles_list , columns =

get_key_keep_list ())
191

192 # some basic cleaning
193 df_cols = articles_df.columns
194 articles_df.fillna(np.nan , inplace=True)
195 articles_df.set_index(’DOI’, inplace=True)
196 articles_df = articles_df [~ articles_df.index.duplicated(keep=’first

’)]
197

198 # basic variable creation and data type fixing
199 articles_df[’reference_len ’] = articles_df[’reference ’].apply(

lambda x: get_reference_len(x)).astype(int)
200 articles_df[’published ’] = pd.to_datetime(articles_df[’published ’],

errors = ’coerce ’)
201 articles_df[’year’] = articles_df[’published ’].dt.year
202 articles_df[’year’] = articles_df[’year’]. astype(’Int64’)
203 articles_df.drop([’published ’], axis=1, inplace=True)
204

205 ## we want to know if we queried all references , so we need to keep
all articles , ##

206 ## even if they don’t have author affiliations ##
207 # primary affiliation to country mapping
208 articles_df[’country ’] = articles_df[’author ’]. apply(lambda x:

get_primary_author_country(x))
209

210 return articles_df
211

212

213 def get_primary_author_country(name_list: List[str]) -> str:
214 if type(name_list) == list:
215 return clean_affiliation_name(name_list [0])
216 return np.nan
217

218

23

219 def get_reference_len(reference: List) -> int:
220 try:
221 return len(reference)
222 except TypeError:
223 return 0
224

225

226 # ARTICLE PRIMARY AFFILIATION CLEANING #
227

228 def clean_affiliation_name(name: str) -> str:
229 found = find_country_name_at_end_of_affiliation(name)
230 if found:
231 return found
232 found = find_state_name_at_end_of_affiliation(name)
233 if found:
234 return found
235 return None
236

237

238 def get_countries () -> Set[str]:
239 with open(’Countries.csv’, ’r’) as handle:
240 countries = set([line.strip() for line in handle])
241 return countries
242

243

244 def get_country_synonyms () -> Dict[str , str]:
245 country_synonyms = {}
246 with open(’Country_synonyms.csv’, ’r’) as handle:
247 for f in handle.readlines ():
248 k, v = f.split(’,’)
249 country_synonyms[k.strip().lower ()]=v.strip()
250 return country_synonyms
251

252

253 def get_us_states () -> Set[str]:
254 us_states = set()
255 with open(’US_states.csv’, ’r’) as handle:
256 for f in handle.readlines ():
257 name , abbr = f.split(’,’)
258 us_states.update ([name.strip(), abbr.strip ()])
259 return us_states
260

24

261

262 def find_country_name_at_end_of_affiliation(name: str) -> str:
263 countries = get_countries ()
264 country_synonyms = get_country_synonyms ()
265 name = name.rstrip(’ ,;-.()’)
266 country_regex = ’|’.join(sorted(countries , key=len , reverse=True))
267 match = re.search(’(’ + country_regex + ’)$’, name , re.I)
268 if match:
269 return match.group()
270 country_synonyms_regex = ’|’.join(sorted(country_synonyms.keys(),

key=len , reverse=True))
271 match = re.search(’(’ + country_synonyms_regex + ’)$’, name , re.I)
272 if match:
273 try:
274 return country_synonyms[match.group().lower()]
275 except KeyError:
276 print(’Synonym not found:’, match.group().lower())
277 return ’’
278

279

280 def find_state_name_at_end_of_affiliation(name: str) -> str:
281 us_states = get_us_states ()
282 name = name.rstrip(’ ,;-.()’)
283 us_states_regex = ’|’.join(us_states)
284 zip_code_regex = ’[0 -9]{5}(-[0 -9]{4})?’
285 match = re.search(’(’ + us_states_regex + ’)[,]*’ + zip_code_regex

+ ’$’, name , re.I)
286 if match:
287 return ’United States ’
288 return ’’
289

290

291 # ARTICLE AGGREGATION #
292

293 def get_articles_from_csv(filename: str , dir=’articles ’) -> pd.
DataFrame:

294 path = ’/’.join([dir , filename])
295 articles_df = pd.read_csv(path , index_col =0)
296 if articles_df.empty:
297 return articles_df
298

299 # if needed , we need to rebuild the lists from string

25

representation
300 columns = articles_df.columns
301 if ’reference ’ in columns:
302 articles_df[’reference ’] = articles_df[’reference ’]. apply(

lambda x: string_to_list(x))
303 if ’author ’ in columns:
304 articles_df[’author ’] = articles_df[’author ’]. apply(lambda x:

string_to_first_list_element(x))
305 return articles_df
306

307

308 def string_to_list(str_of_list: str) -> list:
309 if type(str_of_list) == str:
310 return eval(str_of_list)
311 else:
312 return str_of_list
313

314

315 def string_to_first_list_element(str_of_list: str) -> str:
316 if type(str_of_list) == str:
317 return eval(str_of_list)[0]
318 else:
319 return str_of_list
320

321

322 def get_all_articles_from_csv () -> pd.DataFrame:
323 articles_list = os.listdir(’articles ’)
324 articles_df = pd.DataFrame ()
325 for index , articles in enumerate(articles_list):
326 print(index , articles)
327 articles_temp_df = get_articles_from_csv(articles)
328 articles_temp_df[’country ’] = articles_temp_df[’country ’]. apply

(lambda x: x.title() if type(x) == str else x)
329 articles_df = articles_df.append(articles_temp_df)
330 articles_df = articles_df [~ articles_df.index.duplicated(keep=’

first’)]
331 return articles_df
332

333

334 def get_cnty_counts_df(articles_input_df: pd.DataFrame) -> pd.DataFrame
:

335 # we create a new derivative DataFrame

26

336 articles_df = articles_input_df.drop([’author ’], axis =1)
337

338 # default ratio value when no references present (refs == None)
339 articles_df[’local_ratio ’] = np.nan
340 # default count when no references present
341 articles_df[’reference_used ’] = 0
342

343 # we don’t want to drop articles without a country ,
344 # but we only want to consider source articles with a country
345 print(articles_df [~ articles_df[’country ’].isna()]. shape)
346 for index in articles_df [~ articles_df[’country ’].isna()]. index:
347 refs = articles_df.loc[index , ’reference ’]
348 # refs should either be non -empty list or np.nan
349 if type(refs) == list:
350 source_cnty = articles_df.loc[index , ’country ’]
351 refs_in_cnty , refs_total = get_cnty_counts_for_refs(refs ,

articles_df , source_cnty)
352

353 # either: the article does not have all DOI ancestors in DF
, not a valid observation;

354 # the article has no references with a country , does not
need to be updated

355 if refs_total == 0:
356 continue
357

358 ratio_temp = refs_in_cnty / refs_total
359 articles_df.loc[index , ’local_ratio ’] = ratio_temp
360 articles_df.loc[index , ’reference_used ’] = refs_total
361

362 # although strictly not needed since np.na will be ignored for
grouped statistics by default ,

363 # doing this will reduce any human error
364 articles_df.dropna(subset =[’local_ratio ’], inplace=True)
365 articles_df.drop([’reference ’], axis=1, inplace=True)
366 # data type fix from float
367 articles_df[’reference_used ’] = articles_df[’reference_used ’].

astype(int)
368 return articles_df
369

370

371 def get_cnty_counts_for_refs(refs: List[str], articles_df: pd.DataFrame
, source_cnty: str) -> Tuple[int , int]:

27

372 refs_in_cnty = 0
373 refs_total = 0
374 for ref in refs:
375 ref = urllib.parse.unquote(ref.strip())
376 try:
377 cnty_temp = articles_df.loc[ref , ’country ’]
378 # reference not in DataFrame
379 except KeyError:
380 pass
381 # if successful
382 else:
383 # when entry is not np.nan
384 if cnty_temp == cnty_temp:
385 refs_total += 1
386 if cnty_temp == source_cnty:
387 refs_in_cnty += 1
388 return refs_in_cnty , refs_total
389

390

391 def create_grouped_dfs(articles_df: pd.DataFrame) -> pd.DataFrame:
392 articles_cnty_df = articles_df.groupby ([’country ’]).mean()
393 return articles_cnty_df

Listing 2: Python Functions Developed For Data Collection, Cleaning, and Transformation

28

R Code

1 library(mapdata)
2 library(tidyverse)
3 library(sf)
4 library(tigris)
5 library(spData)
6 library(tmap)
7 library(cartogram)
8 library(isdas)
9 library(gridExtra)

10 library(plotly)
11 library(patchwork)
12 library(spdep)
13 library(GWmodel)
14 library(kableExtra)
15 library(spatialreg)
16 library(spgwr)
17

18

19 ########### Retrieve and Prepare Data ###########
20

21 data(’World’)
22 articles <- read_csv(’country_counts.csv’)
23 colnames(articles) <- c(’sovereignt ’, ’ref’, ’local_ratio ’, ’reference_

used’)
24 articles$sovereignt[articles$sovereignt == ’United States ’] <- ’United

States of America ’
25 articles$sovereignt[articles$sovereignt == ’Tanzania ’] <- ’United

Republic of Tanzania ’
26 articles$sovereignt[articles$sovereignt == ’Serbia ’] <- ’Republic of

Serbia ’
27 merged <- merge(World , articles , by=’sovereignt ’)
28

29 drop_cnty <- c(
30 "Hong Kong",
31 "Singapore",
32 "Puerto Rico",
33 "Falkland Is.",
34 "Fr. S. Antarctic Lands",
35 "New Caledonia",
36 "Greenland"

29

37)
38 merged <- subset(merged , !(name %in% drop_cnty))
39

40 merged.sp <- as(merged , "Spatial")
41 merged.nb <- poly2nb(pl = merged.sp , queen = TRUE)
42

43 World_centroids <- suppressWarnings(
44 st_centroid(merged) %>%st_coordinates ()
45)
46

47 ########### Country Adjacency ###########
48

49 plot(merged.sp , border = "gray")
50 plot(merged.nb , coordinates(merged.sp), col = "red", add = TRUE)
51

52 World.dnb <- dnearneigh(World_centroids , d1 = 0, d2 = 15)
53 plot(merged.sp , border = "gray")
54 plot(World.dnb , World_centroids , col = "brown", add = TRUE)
55

56 World.dnb <- dnearneigh(World_centroids , d1 = 0, d2 = 25)
57 plot(merged.sp , border = "gray")
58 plot(World.dnb , World_centroids , col = "brown", add = TRUE)
59

60 World.knb <- knn2nb(knearneigh(World_centroids , k = 3))
61 plot(merged.sp , border = "gray")
62 plot(World.knb , World_centroids , col = "orange", add = TRUE)
63

64 World.knb <- knn2nb(knearneigh(World_centroids , k = 5))
65 plot(merged.sp , border = "gray")
66 plot(World.knb , World_centroids , col = "orange", add = TRUE)
67

68

69 ########### Local Ratio Mapping ###########
70

71 local_ratio_map <- tm_shape(merged)+
72 tm_fill(col = ’local_ratio ’, title = ’Local Ratio’,
73 breaks = c(0, 0.05, 0.1, 0.15, 0.2,0.3, 0.4, 0.6, 1),
74 palette = ’viridis ’)+
75 tm_layout(main.title = "Local Ratios Calculated per Country",
76 main.title.position = "center")
77

78 local_ratio_map

30

79

80

81 ########### Local Ratio Analysis ###########
82

83 corr_list <- list()
84 for (m in list(3, 5, 10)) {
85 # Find the m nearest neighbors based on the centroids of each country

.
86 World.knb <- knn2nb(knearneigh(World_centroids , k = m))
87

88 # ‘country_sma ‘ will hold the estimated local ratios , based on
neighbors.

89 country_sma <- list()
90

91 # Iterate over countries.
92 for (i in 1 : nrow(merged)) {
93 neighbor_list <- World.knb[[i]]
94 local_ratios_sum <- 0
95 for (j in 1 : m) {
96 local_ratio <- merged[neighbor_list[[j]],]$local_ratio
97 local_ratios_sum <- local_ratios_sum + local_ratio
98 }
99 country_sma <- append(country_sma , local_ratios_sum/m)

100 }
101

102 # Create data frame for the current m value.
103 country_sma <- as.numeric(country_sma)
104 assign(paste("knb_df_", m, sep = ""), data_frame(merged$sovereignt ,

merged$local_ratio , country_sma))
105 }
106

107 # Rename columns.
108 colnames(knb_df_3) <- c(’sovereignt ’,’local_ratio’, ’country_sma’)
109 colnames(knb_df_5) <- c(’sovereignt ’,’local_ratio’, ’country_sma’)
110 colnames(knb_df_10) <- c(’sovereignt ’,’local_ratio’, ’country_sma’)
111

112 # Compute Pearson correlation coefficients.
113 cor(knb_df_3$local_ratio , knb_df_3$country_sma)
114 cor(knb_df_5$local_ratio , knb_df_5$country_sma)
115 cor(knb_df_10$local_ratio , knb_df_10$country_sma)
116

117 # Merge results into a single data frame that can be shown in the

31

article.
118 knb_df_selected <- data_frame(
119 knb_df_10$sovereignt ,
120 knb_df_10$local_ratio ,
121 knb_df_3$country_sma ,
122 knb_df_5$country_sma ,
123 knb_df_10$country_sma)
124

125 colnames(knb_df_selected) <- c(
126 ’sovereignt ’,
127 ’Sample Local Ratio’,
128 ’3 Neighbor Estimation ’,
129 ’5 Neighbor Estimation ’,
130 ’10 Neighbor Estimation ’)
131

132 # Create maps for the selected k-neighbors values.
133 empty_world <- World
134 world_with_estimates <- merge(empty_world , knb_df_selected , by = ’

sovereignt ’, all=T)
135

136 three_neighbor_map <- tm_shape(world_with_estimates)+
137 tm_fill(col = ’3 Neighbor Estimation ’, title = ’3 Neighbor Ratio

Estimation ’,
138 breaks = c(0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 1),
139 palette = ’viridis ’)
140 three_neighbor_map
141

142 five_neighbor_map <- tm_shape(world_with_estimates)+
143 tm_fill(col = ’5 Neighbor Estimation ’, title = ’5 Neighbor Ratio

Estimation ’,
144 breaks = c(0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 1),
145 palette = ’viridis ’)
146 five_neighbor_map
147

148 ten_neighbor_map <- tm_shape(world_with_estimates)+
149 tm_fill(col = ’10 Neighbor Estimation ’, title = ’10 Neighbor Ratio

Estimation ’,
150 breaks = c(0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 1),
151 palette = ’viridis ’)
152 ten_neighbor_map
153

154 # Compute Moran I test statistics

32

155

156 # 3 neighbors: simple average
157 merged.knb_for_moran_3 <- knn2nb(knearneigh(World_centroids , k = 3))
158 merged.w3 <- nb2listw(merged.knb_for_moran_3)
159 moran.test(merged$local_ratio , merged.w3)
160

161 # 3 neighbors: IDW
162 merged.idw_w3 <- nb2listwdist(merged.knb_for_moran_3, merged)
163 moran.test(merged$local_ratio , merged.idw_w3)
164

165 # 5 neighbors: simple average
166 merged.knb_for_moran_5 <- knn2nb(knearneigh(World_centroids , k = 5))
167 merged.w5 <- nb2listw(merged.knb_for_moran_5)
168 moran.test(merged$local_ratio , merged.w5)
169

170 # 5 neighbors: IDW
171 merged.idw_w5 <- nb2listwdist(merged.knb_for_moran_5, merged)
172 moran.test(merged$local_ratio , merged.idw_w5)
173

174 # 10 neighbors: simple average
175 merged.knb_for_moran_10 <- knn2nb(knearneigh(World_centroids , k = 10))
176 merged.w10 <- nb2listw(merged.knb_for_moran_10)
177 moran.test(merged$local_ratio , merged.w10)
178

179 # 10 neighbors: IDW
180 merged.idw_w10 <- nb2listwdist(merged.knb_for_moran_10, merged)
181 moran.test(merged$local_ratio , merged.idw_w10)

Listing 3: R Visualization and Analysis of Local Ratios

